2025-07-19

Homogeneous Coordinates

Useful in Computer Graphics:

If we want to represent rotations and translations using matrices we can use the homogeneous coordinates. It changes translations in 3D to shear transformation in 4D.

\begin{align*} \begin{bmatrix} 1 & 0 & 0 & T_x \\ 0 & 1 & 0 & T_y \\ 0 & 0 & 1 & T_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} x + T_x \\ y + T_y \\ z + T_z \\ 1 \end{pmatrix} \end{align*}

Mathematics:

Given a point \((x, y)\) on a plane, and the homogeneous coordinate of the point is \((xZ, yZ, Z)\) for any non-zero real \(Z\). So, there are infinite coordinates for the same point.

Properties:

Homogeneous:

Since homogeneous coordinates of a point is not unique, any function \(f(x,y, z)\) doesn't necessarily specify a curve in those coordinates. However, when \(f\) is homogeneous, \(f = 0\) represents a curve in homogeneous coordinate system.

\(f\) is homogeneous when for some \(k\):

\[ f(\lambda x, \lambda y, \lambda z) = \lambda^k f(x, y, z) \]

References:


Backlinks


You can send your feedback, queries here