2025-04-03

Low Rank Interpolative Decomposition

Table of Contents

See: Low Rank Approximation [RandNLA - Section 4]

1. One sided IDs

\begin{align*} \underset{m\times n}{A} \approx \underset{m \times k} C \times \underset{k \times n} X \end{align*}

Here, \(A\) is wide \(m << n\) and \(C\) are \(k\) columns of \(A\) and \(X\) is wide interpolation matrix.

\begin{align*} \underset{m\times n}{A} \approx \underset{m \times k} Z \times \underset{k \times n} R \end{align*}

Here, \(A\) is tall \(m >> n\) and \(R\) are \(k\) rows of \(A\) and \(Z\) is tall interpolation matrix.

2. Two sided IDs

\begin{align*} \underset{m\times n}{A} \approx \underset{m \times k} Z \times \underset{k \times k} {A'} \times \underset{k \times n} R \end{align*}

3. CUR Decomposition

\begin{align*} \underset{m\times n}{A} \approx \underset{m \times k} {C} \times \underset{k \times k} {U} \times \underset{k \times n} R \end{align*}

This representation has the benefit that

  • sparsity of \(A\) is maintained
  • computing \(CUR\) is fast and we need only two passes over \(A\)

For an spectral algorithm to compute CUR see: CUR: Interpolative approximation [Spectral Algorithms.pdf: Page 81]


Backlinks


You can send your feedback, queries here